
Examine Dynamic Data Structures and
Complex Algorithms

Yiqiao Yin
Ph.D. Student

Abstract

This report examines the famous file sharing algorithms used in dis-1

tribution systems. We investigate the architecture of these algorithms2

and compares how they are deployed. In addition, this report also3

exposes some of the potential issues with the algorithms. Examples4

and applications are presented to illustrate the survey of the algorithms5

in this report.6

1 Introduction7

The search on similarity of two documents is a well established and import subject in8

computer science (Wang et al., 2014; Enbody and Du, 1988; Chi and Zhu, 2017; Gui9

et al., 2017). Amongst many searching algorithms, hashing becomes famous and rise to10

popularity because of the level of simplicity at deployment and the low cost in regards11

of time and space analysis. Throughout the years, hashing techniques have been evolved12

overtime and many different upgrades have been developed (Chi and Zhu, 2017). The13

hashing techniques are desired to retrieve information from large volume of documents14

and texts for post process analysis and it is widely used in day-to-day work in computer15

science. When deep learning was developed in the late 1980s, hashing algorithms16

have also been used to encourage promising work in machine learning since its design17

provide crucial guideline for scholars to understand the how searching works from18

programming perspective. In large-scale data analysis and today’s BIGDATA concept,19

hashing provides the most fundamental understanding of information representation and20

mapping system between data.21

Clustering technique is another important field of practice in computer science (Saxena22

et al., 2017; Rai and Singh, 2010). In this report, different clustering techniques are23

discussed and a variety of grouping techniques are covered. There is a clear motivation24

in today’s computer science field work to understand and also develop the advancement25

of different clustering for a variety of different purposes in mathematics, engineering,26

computer science, statistics, and so on. Taking a hospital scenario as an example.27

Patients with different diseases are, evidently, treated differently. This is because28

different diseases have different symptoms and hence requires different medicine. A29

good clustering technique can help us navigate the unsupervised world with orders30

instead of chaos.31

2 Description of Different Architectures in Hashing32

This section describes the different architectures of hashing techniques.33

The first fundamental technique to introduce is the hashing function. It is a mathematical34

function that maps information and text to a list of dictionary of keys. To express the35

idea better, we will address the input of the hash functions as keys and the output of36

the hash functions as hash values. In other words, an abstract formula can be expressed37

using a hash function h(·)38

h : keys → hash values (1)

An important property for this setup is that it utilizes statistical concept of how functions39

interact with each other. In addition, the key functionality of a hash function is the40

capability of searching for keys and values even when the information is scrambled41

because the hash function ensures that the resulting values from the function remains42

uniformly distributed when generating the output. This is to avoid collision. A collision43

in a hash function refers to a scenario where two different keys are mapped to one single44

hash value. Hence, the important properties of a good hash function can be summarized45

below46

1. the hash function is efficient and easy to compute;47

2. the hash function is capable of minimizing duplicated scenarios.48

2.1 Properties of Hashing49

From earlier section, it is discussed that a good hashing function has expected inputs to50

be spread over the output range as evenly as possible. This is the uniformity property.51

Like the uniform distribution phenomenon in statistics, every hash value ideally has the52

same probability. A uniform probability distribution states that a random variable x can53

take values from a range [a, b] while each value has the same probability. In other words,54

we can state this formally in the following. Assume that there is support of a random55

variable x to be Rx = [a, b]. The probability density function of a uniform random56

variable takes the following form57

fX(x) =
1

b− a
if x ∈ Rx and fX(x) = 0 elsewhere (2)

This property can be tested and the test for uniformity is called Chi-square test (Rao,58

1972; Inglot and Janic-Wróblewska, 2003). The goal is to produce a goodness-of-fit59

measure using Chi-square test. The key here is to measure whether the actual distribution60

is close to the expected distribution. The closer they are, the higher confidence computer61

scientists have to claim that the actual distribution is uniform. To conduct this test, the62

following formula is used63

n/2m

n+ 2m− 1

m−1∑
j=0

(bj)(bj + 1)/2 (3)

where n is the number of keys, m is the number of buckets, bj is the number of items64

in bucket j. Commonly it is desirable to have the test value to be 0.95-1.00 so that it65

gives computer scientists confidence that the actual distribution is uniform (Castro et al.,66

2005).67

2

2.2 Discussion of Architecture, Coding, and Implementation68

This section provides some demonstration of the architecture of hashing. Since hashing69

function is a technique to solve a particular data structure question, there is no universal70

hashing algorithm to solve all problems. Hence, this subsection will use example-based71

approach to explain the architecture of the hashing algorithm, the coding style, and the72

implementation.73

The first example is to search if one list of items is inside another list of items. It is one74

of the most common data structure problems that need to be solved. Suppose there are75

two lists and each of them has certain number of digits. Denote them list 1 and list 2.76

One simple goal is to check if one list has all of its items inside the other. This type of77

task is called "sub-list search" and it is a common task abstracted to solve different kinds78

of computer programming problems.79

A sample syntax is presented below. The syntax creates a function called "is_this_subset"80

and the function takes two inputs. The two inputs can be two lists or two arrays. The81

algorithm presents a nested for loop or double for loop. The first for loop searches82

through each item in the second array while the nested loop or the inside loop searches83

for each item in the first array. Each of the inside loop checks if the second array is84

inside the first and breaks if the condition does trigger. Then the algorithm checks if the85

running index j is the same with the length of first array. The algorithm returns negative86

or “0” value if the condition triggers. In the end, if everything checks, the algorithm87

returns positive or “1”.88

89
def is_this_subset(the_first_array, the_second_array):90

i = 091

j = 092

93

l1 = len(the_first_array)94

l2 = len(the_second_array)95

96

for i in range(l2):97

for j in range(l1):98

print(i, j)99

if(the_second_array[i] == the_first_array[j]):100

print(i, j, the_second_array[i], the_first_array[j101

↪→])102

break103

104

the above nested loop can break105

when the condition triggers106

else it runs the following107

then returns 0 if j is the108

same as l1109

if (j == l1):110

return 0111

112

when the nested for loops113

finishes above114

we can wrap things up here115

return 1116

117

the_first_array = [11, 4, 452, 6, 213, 3]118

the_second_array = [11, 213, 4, 3]119

3

120

print(is_this_subset(the_first_array, the_second_array))121122

3 Clustering Techniques123

This section covers the fundamentals of clustering techniques. The basic purpose for124

clustering techniques is to divide data into different groups based on similarity. For each125

group, there are certain number of items from the original data and these items for a126

cluster. Inside of this cluster, the items are similar to each other more than they are to the127

rest of the items. There can be many building blocks inside of the clustering algorithm128

and many places require their own tuning parameters range. The key idea for most129

clustering techniques is to use a distance function to measure how far one data point130

is from the other. If the distance function produces a value that is high, then it implies131

that the two data points are far away. This distance value can be used as a comparison132

purposes amongst all data points. The most basic distance function is the Euclidean133

distance and it tkaes the following form134

d(x, y) =

√∑
i

(xi − yi)2 (4)

where x and y are two attributes in the data and the running index i tracks each instance135

(or sample) in the data. There are a few more famous distance functions desired for most136

clustering techniques and we list them below137

Euclidean: d(x, y) =
√∑

i(xi − yi)2

Squared Euclidean: d(x, y) =
∑

i(xi − yi)
2

Manhattan: d(x, y) =
∑

i |xi − yi|
(5)

There are many algorithms surveyed in clustering techniques (Rai and Singh, 2010).138

They come down to two original ideas. The first one is nearest neighbor method and the139

second one is the hierarchical method. Both methods can be demonstrated in the Figure140

1. The nearest neighbor method uses distance functions to measure how far a data point141

is from the rest of the data points. The data points with closer distances are grouped142

together. The second method is hierarchical method. A famous hierarchical method is143

dendrogram. The algorithm investigates the pair-wise distances between data points and144

assign them to different branches accordingly. The branch accelerates in levels when145

the distances get pass certain thresholds where these thresholds are numerical tuning146

parameter.147

4

Figure 1: Clustering Techniques. Famous clustering techniques can be seen in this
diagram. By using two attributes, the data points can be grouped into different clusters
using nearest neighbors or hierarchical methods. The graph is an adaption from Figure 4
of this research (Rai and Singh, 2010).

4 Deployment148

This section briefly discusses the crucial steps required for deploying a hashing algorithm149

in practice. The stages and levels of deployment depends on the existing system and150

pipeline in place.151

First, it is likely that the existing system in place consists of some of hashing techniques152

and the system works smoothly and efficiently to a certain level. It is up to the computer153

scientists to evaluate the system and the business requirement to decide whether the154

current system needs to be replaced or upgraded.155

Second, the scenario can be that there is no existing system in place. In this case, there156

is more freedom of what hashing algorithm to be put in place. A new algorithm will be157

proposed and certain measurements need to be taken.158

In regards to measurements, our previous work investigated the Big-O analysis on159

different algorithms. This can be taken as the major measurement to assess and evaluate160

the performance of different hashing algorithms. It can certainly be used to provide161

crucial guidance whether the current system needs to be replaced. It is recommended162

and certainly desired to investigate the time and space consumption using Big-O notation163

before any upgrade or novel proposal of new hashing algorithm.164

5 Potential Issues165

Potential issues can occur when the current or the proposed hashing algorithms do not166

satisfy the business moat. Every business has an economic moat and the range of such167

5

moat expands as the business scales up in size. Different consumer groups will arise and168

the business will have to adjust its operation activities accordingly. This is where data169

type and data structure changes.170

Whenever there is a change on data type or structure, it is absolutely necessary to171

evaluate the time and space consumption of the current hashing algorithms. If the current172

benchmark does not meet the requirements anymore, it would have to be replaced or173

upgraded.174

References175

Castro, J. C. H., Sierra, J. M., Seznec, A., Izquierdo, A., and Ribagorda, A. (2005). The176

strict avalanche criterion randomness test. Mathematics and Computers in Simulation,177

68(1):1–7.178

Chi, L. and Zhu, X. (2017). Hashing techniques: A survey and taxonomy. ACM179

Computing Surveys (CSUR), 50(1):1–36.180

Enbody, R. J. and Du, H.-C. (1988). Dynamic hashing schemes. ACM Computing181

Surveys (CSUR), 20(2):850–113.182

Gui, J., Liu, T., Sun, Z., Tao, D., and Tan, T. (2017). Fast supervised discrete hashing.183

IEEE transactions on pattern analysis and machine intelligence, 40(2):490–496.184

Inglot, T. and Janic-Wróblewska, A. (2003). Data driven chi-square test for uniformity185

with unequal cells. Journal of Statistical Computation and Simulation, 73(8):545–561.186

Rai, P. and Singh, S. (2010). A survey of clustering techniques. International Journal of187

Computer Applications, 7(12):1–5.188

Rao, J. (1972). Some variants of chi-square for testing uniformity on the circle. Zeitschrift189

für Wahrscheinlichkeitstheorie und verwandte Gebiete, 22(1):33–44.190

Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding,191

W., and Lin, C.-T. (2017). A review of clustering techniques and developments.192

Neurocomputing, 267:664–681.193

Wang, Q., Si, L., Zhang, Z., and Zhang, N. (2014). Active hashing with joint data194

example and tag selection. In Proceedings of the 37th international ACM SIGIR195

conference on Research & development in information retrieval, pages 405–414.196

6

	Introduction
	Description of Different Architectures in Hashing
	Properties of Hashing
	Discussion of Architecture, Coding, and Implementation

	Clustering Techniques
	Deployment
	Potential Issues

