
Evaluate Functional Programming Solutions

Yiqiao Yin
Ph.D. Student

Abstract

This report develops a comparison in matrix form of two functional1

programming languages. The report summarizes some technical pa-2

pers in regarding to the particular programming process of the func-3

tional programming languages and their workflow required to be put in4

production. It concludes different scenarios with technical explanation5

and sample code in regards to the programming structure. Moreover,6

this report evaluates the programming and scripting languages such as7

PowerShell across different applications.8

1 Introduction9

This report explores the internal relationship of different functional programming lan-10

guages as software development solutions. The report aims to develop a comparison11

matrix of selected functional programming languages. In addition, the report discusses12

different scenarios from different technical perspectives such as repetitive processes,13

computation and calculations, and procedural steps taken to execute the program.14

The functional programming languages is a type of computer programming language that15

is designed to take human thought process and execute in different stages. Each stage16

can be sent in another and the procedure acts like a mathematical function Goldberg17

(1996). It also is more difficult to learn than its many peers due to its internal relationship18

with mathematics Khanfor and Yang (2017). Many researchers and scholars have argued19

that functional programmers are able to execute mathematical ideas at a much higher20

magnitude Goldberg (1996); Hudak (1989); Hughes (1989); Khanfor and Yang (2017);21

Wadler (1992).22

The previous report or assignment discussed detailed information of what constitutes23

procedural languages such as FORTRAN or C. The variables are required to be defined24

before any assignment or modification. In basic mathematical form, a function is a map25

from one set to another and we can write26

f : x → y (1)

where x is the input of the function and y is the output. In set theory, x is also known as27

the domain where y is known as the range. While this functional form is clearly defined28

mathematically, it yet lacks the mobility to be transferred into a program. This is the29

motivation for functional programming languages. Hence, a pseudo code of a functional30

programming language may look like the following31

32



let x = 233

define f(x):34

return x*235

36

print(f(2)) # this would produce 4, because 2*2=43738

This is very similar to the lambda-function in python, which we present a similar example39

below.40

41
y = lambda x: x*242

print(y(2)) # this will return 4, because 2*2 is 44344

Due to the internal structure of the coding design, software programs written using45

functional programming languages are compiled to send into execution. Take the above46

simple operation, 2 × 2 = 4, as an example. The functional programming language47

writes a function that lives abstractly (it is not ran yet) but also physically (in an actual48

directory). The program cannot be broken apart. In other words, we cannot run “define49

f(x):” and then run “return x*2” separately. The program is by itself a whole and it50

executes as a whole body. Hence, this is why functional programming languages are51

often times accompanied with scripting language such as PowerShell.52

2 Motivations53

This section introduces the motivation of our investigation. Software engineers, data54

scientists, and IT professionals are the major support system of today’s technology55

improvement especially in large corporations. Their workflow can consist of applying56

their knowledge and coding experience to design creative software platforms are smart57

and intelligent to serve certain business functions or directly serve the consumers. The58

above section as well as the previous assignment we have discussed the internal coding59

structure of procedural programming languages (from the last assignment) and functional60

programming languages (in this assignment). However, the motivation has not yet been61

clearly discussed.62

One important theme of software development is the repetitive processes that need to be63

omitted from the software pipeline. This could refer to as easy as redefining a variable64

or as complicated as rewriting an entire script that has thousands of lines of code. It is65

the responsibility of the software engineers and data scientists to ensure the efficiency of66

the production chain.67

2.1 Repetitive Process and Calculations68

In a data science project, the workflow starts with a motivational research question that69

usually addresses certain business needs. The research leads to an optimal machine70

learning model or algorithm of which can be used every time the client faces the same71

task. Upon the approval of this model, the repetitive process occurs whenever the72

model is deployed. This calls for the need of packaging code and ship to production73

environment. The model or the algorithm does certain tasks that can involve certain level74

of mathematical computation. In this case, calculations are also involved every time the75

function is called.76

Consider the following supervised example. There is a task designed to learn from77

features X and to produce an educated guess of Y . For simplicity purpose, a simple78

2



model can be built using weights w⃗ such that the linear transformation w⃗X is fed into a79

non-linear transformation called sigmoid function that takes the following form80

output = σ(input) =
1

1 + exp(−input)
(2)

where the input is the linear transformation w⃗X . In this case, the calculation is purely81

mathematical and the final output can be formally written as82

output = σ(w⃗X) =
1

1 + exp(−w⃗X)
(3)

To search for the most optimal sets of weights w⃗, it is efficient to use an optimization83

algorithm called gradient descent. This algorithm requires a for loop that compares the84

losses of the output with the training data output. The loss function can be formally85

written as the following86

L(output, ˆoutput) =
∑
i=1

(
output − ˆoutput

)2
(4)

where i is the running index tracking the index of each data point in the training sample.87

The loss function serves as a guide to indicate the amount of mistakes created using this88

estimated output from the model. The gradient descent helps the program to minimize89

the loss. Formally, gradient descent takes partial derivative of the loss function with90

respect to the weight91

∇L(output, ˆoutput) =
∂

∂w⃗
L(output, ˆoutput) (5)

and hence this requires a for loop to iteratively update the weights using the gradients92

calculated above. The for loop updates the weights using the following equation93

w⃗s := w⃗s−1 − η∇L(output, ˆoutput) (6)

where the running index s tracks the steps in the gradient descent algorithm. In other94

words, as s increases, the loss of eq. 4 is expected to produce smaller values.95

2.2 Matrix Comparison96

This subsection we focus on developing a comparison matrix summarizing the attributes97

from the previous subsection. From the previous subsection, we discussed the math-98

ematical setup of a neural network. The setup provides the technical detail of one99

unique neuron. In practice, as shown in the C-base implementation, it is possible and100

sometimes also desirable for the researcher to develop deeper neural network models.101

The development of neural network models consist of a forward propagation and a102

backward propagation. The forward propagation consists of repetitively feed in neurons103

with a linear transformation and a non-linear transformation. The backward propagation104

consists of using gradient descent to update the weights in the neural network layer by105

layer in a backward manner.106

The core mathematical concept of sigmoid function itself is a very simple task. It requires107

very simple calculation and there is no repetitiveness. Hence, an activation such as a108

sigmoid function would sit on the left bottom of the Figure 1.109

The gradient descent acts as a building block of backward propagation. The gradient110

descent must have a for loop to iteratively update the weights using gradient which is111

partial derivative of the loss function. Hence, it requires higher calculations and much112

3



Figure 1: Comparison Matrix. The matrix presents the scenarios discussed in previous
section with respect to repetitiveness and level of calculations.

higher repetitiveness than a simple sigmoid function. Hence, gradient descent would113

sit on the top right corner of the sigmoid function. Forward propagation can increase114

some calculations, however, the repetitiveness is the key component that is killing the115

memory. Hence, forward propagation would be at the top right corner of the gradient116

descent algorithm.117

The backward propagation is essentially many gradient descent algorithms propagating118

backward from the output layer to the first layer, because the algorithm is updating the119

weights. Hence, the backward propagation would sit on the very top right corner of the120

diagram in Figure 1.121

These four components (sigmoid function, gradient descent, forward propagation, and122

backward propagation) are all listed in Figure 1.123

3 Solution124

3.1 Address Technical Explanation125

Now that the algorithm and model is clearly written above mathematically it is up to126

computer scientist to execute these mathematical expression into computer program.127

Due to the length of the C-based implementation, we refer our readers to this source1,128

which gives us the C implementation of a simple neural network that follows the same129

mathematical workflow above.130

The technical solution can be proposed using functional programming. First, the entire131

script in source mentioned above is in a script. In other words, the script can be called132

upon desire and the program executes with a line of code in PowerShell. PowerShell is a133

1Source: To see the link, press here.

4

https://gist.github.com/espiritusanti/b7485c68a06ef2c8c76d8c62c8c39d8f


very powerful command language used by the Windows system. It is designed to auto-134

mate the task and enable simplified configuration when execute a scripted programming135

software. In this case of the report, the C-based implementation can be executed using136

PowerShell.137

The next step is to write the idea from the above mathematical expressions into the code.138

Upon define the variables, we need139

140
double sigmoid(double x) { return 1 / (1 + exp(-x)); }141

double dSigmoid(double x) { return x * (1 - x); }142

double init_weight() { return ((double)rand())/((double)RAND_MAX);143

↪→ }144145

and these variables are defined globally so that they can be used directly downstream146

anywhere in the script. Then we shuffle the data and this code is omitted because it is147

trivial for the purpose of this report. Then there are the following for loop to executes148

the main body of the neural network. The first for loop defines the hidden weights. The149

second for loop defines the bias. The third for loop defines the output layer.150

151
for (int i=0; i<numInputs; i++) {152

for (int j=0; j<numHiddenNodes; j++) {153

hiddenWeights[i][j] = init_weight();154

}155

}156

for (int i=0; i<numHiddenNodes; i++) {157

hiddenLayerBias[i] = init_weight();158

for (int j=0; j<numOutputs; j++) {159

outputWeights[i][j] = init_weight();160

}161

}162

for (int i=0; i<numOutputs; i++) {163

outputLayerBias[i] = init_weight();164

}165166

The above wraps up the design of the neural network which corresponds to eq. 2 and eq.167

1.168

The body of the neural network is the main part and component that requires the most169

amount of iteration, repetitiveness processes, and calculations. There is a big for loop170

covers up the forward propagation and the backward propagation. The pseudo code is171

presented as the following172

173
for (int n=0; n < 10000; n++) {174

\\ shuffle175

for (int x=0; x<numTrainingSets; x++) {176

// Forward pass177

for (int j=0; j<numHiddenNodes; j++) {178

... \\ omit the body here179

}180

181

// Backprop182

double deltaOutput[numOutputs];183

for (int j=0; j<numOutputs; j++) {184

... \\ omit the body here185

}186

}187

5



\\backward pass188

}189190

Though more cumbersome than its python version, the script does get the job done and it191

executes faster than python in its most basic operations. To execute this in a PowerShell,192

we can run the following code193

194
cd "C:\path\to\" # whatever path desired195

.\"a_neuralnetwork_model.exe"196197

As a summary, this section addresses some of the scenarios where the operation can con-198

sist of repetitive processes and calculations that may not be efficient to be programmed199

line by line. Hence, the technical solution proposed is to write them using functional200

programming. In this section, we provide a small neural network example with C-based201

implementation to showcase that workflow can be much more efficient when functional202

programming is used.203

3.2 Functional Programming as Solution204

The matrix discussed in the first section lays out the major challenges of the repetitiveness205

process and the level of complexities in calculations of programming environment. The206

beginning subsections of this section lays out the potential solutions using programming207

functions. In addition, the report sourced a C-based implementation of the neural208

network model to demonstrate the level of efficiency that can be done using functional209

programming.210

As a conclusion, the report exhibits evidence to showcase the major benefits of functional211

programming language with a real world modeling example of neural networks.212

References213

Goldberg, B. (1996). Functional programming languages. ACM Computing Surveys214

(CSUR), 28(1):249–251.215

Hudak, P. (1989). Conception, evolution, and application of functional programming216

languages. ACM Computing Surveys (CSUR), 21(3):359–411.217

Hughes, J. (1989). Why functional programming matters. The computer journal,218

32(2):98–107.219

Khanfor, A. and Yang, Y. (2017). An overview of practical impacts of functional220

programming. In 2017 24th Asia-Pacific Software Engineering Conference Workshops221

(APSECW), pages 50–54. IEEE.222

Wadler, P. (1992). The essence of functional programming. In Proceedings of the 19th223

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages224

1–14.225

6


	Introduction
	Motivations
	Repetitive Process and Calculations
	Matrix Comparison

	Solution
	Address Technical Explanation
	Functional Programming as Solution


